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An immersed boundary �nite di�erence method for LES of
�ow around blu� shapes
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SUMMARY

A three-dimensional numerical model using large eddy simulation (LES) technique and incorporating
the immersed boundary (IMB) concept has been developed to compute �ow around blu� shapes. A
fractional step �nite di�erences method with rectilinear non-uniform collocated grid is employed to
solve the governing equations. Blu� shapes are treated in the IMB method by introducing arti�cial
force terms into the momentum equations. Second-order accurate interpolation schemes for all sorts of
grid points adjacent to the immersed boundary have been developed to determine the velocities and
pressure at these points. To enforce continuity, the methods of imposition of pressure boundary condition
and addition of mass source=sink terms are tested. It has been found that imposing suitable pressure
boundary condition (zero normal gradient) can e�ectively reproduce the correct pressure distribution and
enforce mass conservation around a blu� shape. The present model has been veri�ed and applied to
simulate �ow around blu� shapes: (1) a square cylinder and (2) the Tsing Ma suspension bridge deck
section model. Complex �ow phenomena such as �ow separation and vortex shedding are reproduced
and the drag coe�cient, lift coe�cient, and pressure coe�cient are calculated and analyzed. Good
agreement between the numerical results and the experimental data are obtained. The model is proven
to be an e�cient tool for �ow simulation around blu� bodies in time varying �ows. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow past blu� bodies occur in many branches of engineering, such as water �ow around
hydraulic structures and wind �ow around buildings. The resulting �ow pattern is usually
very complex and highly transient, including �ow separation, vortex shedding, high level of
turbulence and large scale eddies. The application of computational �uid dynamics (CFD) in
this area for the design and testing of technological solutions has received attention in the
past two decades. The technique of large eddy simulation (LES) becomes increasingly popular
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because it has less empiricism and the excessive computational e�ort required is relieved by
the advancement in computing technology.
To deal with complex geometry, rectilinear grid system is known to be inferior and body-

�tted curvilinear or unstructured grid system is frequently used. The latter methods are more
complicated in terms of grid generation and solution algorithm and are computationally more
expensive. In addition, in many practical problems geometrical complexity is combined with
moving or deformable boundaries, which considerably increases the computational di�cul-
ties since regeneration of the grid system is required at every time step. Consequently the
simulation of �ow past blu� bodies using LES technique will be very expensive and time
consuming, owing to the large number of nodes, the large number of computing operations
per node and the high storage requirements. A numerical procedure that can cope with the
�ow and geometry complexity but at the same time retain the accuracy and e�ciency of
the method based on �xed rectilinear grids is highly desirable. One approach that has such
advantages is the immersed boundary (IMB) method.
The basic idea of the IMB method lies on the de�nition of the solid (either moving or

not) boundaries. Instead of using complicated boundary �tted grids to de�ne the geometrical
con�guration, the IMB method actually mimics a solid body by means of suitably de�ned
body forces applied to the discretized set of the momentum equations. The body force is
imposed so that the velocity distribution on an immersed boundary is equal to a speci�ed
function.
The immersed boundary concept was originally presented in the pioneering work of Peskin

[1], who reported at the beginning of the 1970s the simulation of blood �ow in heart assuming
a low Reynolds number (Re) and two-dimensional �ow. Goldstein et al. [2] seems to be the
�rst group using this method to treat solid boundaries. The IMB technique was combined
with spectral methods to simulate two-dimensional startup �ow around a circular cylinder,
as well as three-dimensional plane and ribbed-turbulent channel �ow. In order to calculate
the forcing F , two empirical coe�cients related to the �ow frequencies were introduced.
The forcing F induced spurious oscillations and numerical instability which restricted the
computational time step size. Saiki and Biringen [3] used the same forcing as that used by
Goldstein to compute the �ow around �xed and rotating circular cylinders using a fourth-order
central �nite-di�erence scheme. Their results showed that the use of �nite di�erence scheme
eliminated the occurrence of spurious oscillations of �ow at the boundary.
Mohd-Yusof [4] proposed a direct forcing method which is signi�cantly more stable. In the

method no empirical coe�cients are required, and the derivation of forcing F is unambiguous.
The method has been successfully applied to calculate �ows around cylinders and spheres at
moderate Re. In the actual implementation of the method, the direct evaluation of the forcing
function is unnecessary. This makes the method similar to the ordinary way of imposing
the velocity boundary condition. Kim et al. [5] introduced both the forcing terms into the
momentum equations and the mass source term into the continuity equation to ful�ll the
continuity requirement at the solid boundary. Their results showed that the errors in the
computation for the case with the mass source term were much smaller than those without
the mass source term and were comparable to those obtained by the conventional method.
Fadlun et al. [6] de�ned F as the forcing acting only on the grid cells with the mimicked
boundary. The velocity at the �rst grid point external to a solid body is obtained by linear
interpolation of the velocity at the second grid point (which is obtained by directly solving
the N–S equation) and the velocity at the body surface. In Kim’s method, the momentum

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:85–107



IMMERSED BOUNDARY FINITE DIFFERENCE METHOD 87

forcing is applied on the body surface or inside the body. In almost all of the reported works,
staggered arrangement of variables on structured rectilinear grids was adopted. Finite volume
method (FVM) and �nite di�erence method (FDM) were used to discretize the governing
equations.
In the present paper, a 3D LES �ow model is developed in which the IMB method is

incorporated with a fractional step �nite di�erence scheme. The momentum forcing terms
are explicitly evaluated to eliminate empiricism. The �ow variables are de�ned on a collo-
cated grid system which makes the interpolating procedures much simpler and easier to be
implemented. The second-order accurate linear or bilinear interpolations are used to estimate
the �ow variables at the gird points adjacent to the immersed boundary. Zero pressure gra-
dient boundary condition is also incorporated into the interpolation procedures to e�ectively
reproduce the correct pressure distribution on the immersed boundaries and to enforce mass
conservation. The model will be validated and applied to the simulation of �ows around a
square cylinder and the TsingMa suspension bridge deck section model.

2. IMB CONCEPT

The concept of the IMB lies on the de�nition of the solid boundaries. When ‘�uid �ows over
a body it exerts a normal force on the surface and, if the surface is no-slip, the �uid also
exerts a shear force. So the surface exerts a force of opposite sign on the �uid, in the no-slip
case, this localize force is what brings the �uid to rest on the body’ [2]. The implication is
that the e�ect of certain boundary conditions can be modelled by an external force �eld rather
than by the speci�cation of boundary values. Hence, instead of using complicated boundary
�tted grids to de�ne the body in the �ow, the IMB method actually mimics it by means
of suitably de�ned body forces applied to the discretized set of momentum equations. The
Navier–Stokes equations with such forcing terms introduced through the boundary conditions
can be written as

Du
Dt
=−∇p+ �∇·[∇u] + F (1)

where u=velocity vector; p=pressure, �=kinematic viscosity, F =body force vector. The
body force F should be calculated at every time step so that the velocity distribution on an
arbitrary surfaces S is equal to a speci�ed vector function VS. The body forcing is applied only
on the immersed boundary, and sometimes inside the body. When the forcing point coincides
with the immersed boundary, the momentum forcing is speci�ed such that the velocity is
zero at that point (no-slip condition). For the forcing point inside the body and nearest to
the boundary, the momentum forcing is speci�ed such that the normal and tangential velocity
components with respect to the boundary are equal and opposite to the velocity components at
the corresponding point just outside the body. When the boundary surface does not coincide
with a grid plane, the forcing F will act on the points nearest to the immersed boundary.
An interpolation method for the forcing will be needed so that the forcing will render the
velocity at the immersed boundary exactly equal to VS.
For the grid point on a boundary S,

un+1 = un +�t(Rhs+ F)=Vs (2)
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where the superscript n=number of time step; �t= time step size; Rhs=sum of the pressure
gradient, advection and di�usion terms; Vs = speci�ed velocity along the boundary. To make
the velocity of the new time step un+1 equal to the desired value VS on the immersed boundary,
the source term F of Equation (1) can be computed by

F =−Rhs+ VS − un
�t

(3)

This forcing is direct in the sense that the desired value of the velocity is imposed directly
on the boundary without any empiricism.
The main advantage of IMB is that the forcing F can be prescribed on a regular grid and the

accuracy and e�ciency of the solution procedure on simple rectilinear grids are maintained. In
principle there are no restrictions for the velocity distribution VS. In case of a stationary solid
body with no-slip boundary condition, VS =0 along the boundary, and the implementation
of the IMB is much simpler. Also the application of this method to multi-body problem is
straightforward [7].

3. GOVERNING EQUATION

The governing equations for the spatially �ltered �ow are derived from the N–S equations
and are written as follows:

@ui
@xi

= 0 (4)

@ui
@t
+ uj

@ui
@xj

= −1
�
@p
@xi

+
@
@xj
(�ij + Rij) (5)

where xi (i=1; 2; 3, and x1 ≡ x; x2 ≡y; x3 ≡ z) are Cartesian co-ordinates in the streamwise,
spanwise and vertical directions, respectively; ui (i=1; 2; 3, and u1 ≡ u; u2 ≡ v; u3 ≡w) the
corresponding velocity components; � the density, �ij the shear stress tensor due to kinematic
viscosity, Rij the sub-grid scale shear stress tenor due to spatial �ltering.
In the present study, the Smagorinsky model is used to close the sub-grid scale stresses Rij,

in which Rij= �tSij, where Sij is the strain rate tensor of the resolved �eld, �t =eddy viscosity.
The eddy viscosity is parameterized by �t =2(L2s

√
2SijSij), where Ls is the characteristic length

scale=Cs(�1�2�3)1=3 with �i=grid size in ith direction, Cs=0:15. By incorporating the
IMB method, the governing equation (5) can be rewritten as

@ui
@t
+ uj

@ui
@xj

=−1
�
@p
@xi

+
@
@xj

(�ij + Rij) + fi (6)

where fi is the body force component acting on the desired points near the boundary or the
points inside the immersed boundary.

3.1. Fractional step method

The fractional step method is used to solve Equations (4) and (6). The entire computational
procedure is broken into four major steps: advection step, di�usion step, pressure propagation
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step and body force step. The present model is modi�ed from the model by Lin and Li
[8] in which the sigma-co-ordinate transformation is used. In the present model the sigma-
transformation is still retained so that the model can handle a wide range of problems, such
as waves against blu� bodies.
Advection step. The �nite di�erence form for the advection step of the x-momentum equa-

tion can be written as

un+1=4i; j; k − uni; j; k
�t

+
(
u
@u
@x
+ v

@u
@y
+ w

@u
@z

)
i; j; k

=0 (7)

where (i; j; k)= location of a grid point. The method of backward characteristics is employed to
solve the above equation. Assume the spatial variation of a function (e.g. velocity component)
can be decomposed into a series of Fourier wave components, the schemes in this class of
method produce accurate solution for the advection of waves. In particular the phase accuracy
is high and the amplitude damping is small. Under uniform grid system the combination of
the quadratic backward characteristics method [9] and the Lax–Wendro� method gives the
Minimax characteristics method [10]. The implementation of this method to non-uniform grid
has been carried out by Li and Lin [11] and the method is adopted here.
Di�usion step. The di�usion process is solved after the advection is completed. The di�er-

ence form of the di�usion step for the x-momentum equation is

un+2=4i; j; k − un+1=4i; j; k

�t
=

(
@�xx
@x

+
@�xy
@y

+
@�xz
@z

)n+1=4
i; j; k

(8)

where

�ij=(�+ �t)
(
@ui
@xj

+
@uj
@xi

)
(9)

The second order central di�erence scheme in space and forward di�erence in time are used
to discretize equation (8).
Pressure propagation step. The pressure propagation step solves the pressure gradient and

the additional source and sink terms except the body force term fi. The projection method
has been employed to calculate the pressure and velocity �eld so that the updated velocity
�eld satis�es the divergence-free condition as imposed by the continuity equation (1). The
�nal Poisson equation for pressure is as follows:

@2p
@x2

+
@2p
@y2

+
@2p
@z2

=
�
�t

(
@u
@x
+
@v
@y
+
@w
@z

)n+2=4
i; j; k

(10)

There are two commonly used grid system in numerical �ow models: collocated grid and stag-
gered grid. In the conventional collocated grid, the solution of the pressure Poisson equation
and the satisfaction of the continuity constraint can be problematic due to pressure–velocity
coupling and the existence of pressure oscillations. One remedy is to use a fully staggered
arrangement of the velocity components and pressure variables. However, the discretization of
the cells near the immersed boundary will then be complicated. Another way is still using the
collocated grid, but with the pressure derivatives evaluated at the cell face locations by linear
interpolation [12]. This results in the standard second order central di�erence discretization
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of the second order pressure derivatives. This scheme will eliminate any 1� oscillation in
pressure if the source terms in the Poisson equation are evaluated at the cell surfaces by
linear interpolation. The scheme is not exactly energy conserving because the evaluation of
the source terms at the cell interfaces introduces a second order error term proportional to the
fourth order to the pressure gradient. However, this term is small and is of the same order
as the error in the basic discretization scheme and so does not a�ect signi�cantly the overall
accuracy of the scheme. In a previous numerical study of wave propagation problem [8], the
energy decay is found to be less than 2%.
In the present study the collocated grid is used, and the velocity and pressure derivatives are

evaluated at the cell face locations by linear interpolation to eliminate pressure oscillations.
The main advantage of the present approach is that the grid system is very simple, and the
numerical scheme including the interpolation procedure for boundary grid points is easier to
be implemented.
One of the main challenges in the simulation of �ows with geometrically complex domain

is the search of an accurate and fast solution algorithm for pressure, since the solution for
pressure is the most computationally intensive step in the whole solution. In the present work
a stable and robust conjugate gradient method CGSTAB [13, 12] is adopted to solve the above
equation.
The updated velocity can then be calculated by the velocity correction equations

un+3=4i; j; k = u
n+2=4
i; j; k − �t

�

(
@P
@x

)n+2=4
i; j; k

+�t·gx (11)

The solution of the momentum equations in y and z directions can be obtained similarly. The
full details of the numerical technique can be found in Reference [8].
Body force source step. The IMB method is introduced in this step. The equation is

given by

un+1i; j; k − un+3=4i; j; k

�t
=fi (12)

In some reported works [14, 4], the forcing term fi was not explicitly speci�ed at the grid
points adjacent to a solid boundary, so the implementation of the IMB concept is similar to
the direct imposition of no-slip boundary conditions used in common models. In the present
study, fi is explicitly calculated as an independent fractional step using the velocity at the
previous sub-step and the velocity boundary condition Vs.

3.2. Interpolation method
The major di�culty in using IMB method is the location of the immersed boundary and
the imposition of boundary condition at the immersed boundaries. In particular, since the
immersed boundary can cut through the underlying Cartesian mesh in an arbitrary manner,
the main challenge is to construct a boundary treatment method which will not a�ect the
accuracy and the conservation property of the underlying numerical solver. In the present
study, we have developed an automatic boundary location method which is well suited for
immersed boundary with an arbitrary shape.
The key boundary co-ordinates of an arbitrary blu� body as shown in Figure 1(a) are �rstly

input into the model. The shape is �xed in the regular grid system by two sets of nodes marked
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Figure 1. Grid point identi�cation of an arbitrary blu� shape: (a) arbitrary
blu� shape; and (b) positioning of the blu� shape.
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Figure 2. Schematic diagrams for the interpolation scheme: (a) linear
interpolation; and (b) bilinear interpolation.

in Figure 1(b) as E(east), W(west) and S(south), N(north). According to the co-ordinates of
these nodes, all the grid points in the computational domain can be identi�ed automatically by
0 for the interior points, 1 for external points and 8 for the points on the immersed boundary.
If the position of the immersed boundary is time varying or the body is deformable, the only
extra e�ort is to work out the time-varying immersed boundary co-ordinates in Figure 1(a).
In this case, the markers of grid points will be identi�ed automatically at every time step and
the time-varying immersed-boundary can be simulated without any technical di�culties.
For the nodes located exactly on the immersed boundary, fi can be calculated easily from

Equation (12). Obviously this is not always the case when the immersed boundary has complex
shape. Therefore, an interpolation procedure is required. In the present study, the second-order
linear or bilinear interpolation procedure for the velocity is used. Figure 2 shows the schematic
diagrams for the interpolation schemes used in this study. In Figure 2(a), P is the point on
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Figure 3. Nodes for non-zero forcing (�lled squares and circles).

the immersed boundary for which the no-slip boundary condition should be satis�ed, and A
is the nearest interior point which has only one �uid neighbour point (node B). In this case,
UA and UB is obtained by linear interpolation between UD and the no-slip velocity condition
at P.

UA=−ha
hd
UD; UB=

hb
hd
UD (13)

where, ha; hb; hd are the distances between A; B;D and P, respectively. Certainly this interpola-
tion method requires the grid to be �ne enough closed to the boundary so that the interpolated
velocity is accurate. Comparison with the interpolation methods proposed by Kim et al. [5],
the present approach, Equation (13), gives a more realistic velocity distribution because a vir-
tual no-slip velocity condition has been satis�ed between nodes A and B. In Figure 2(b), the
interior point A has two �uid-neighbour nodes B and D. By using the second-order bilinear
interpolation, we have

UP=
[(UD·�x1 +UC ·�x2)�y2 + (UA·�x1 +UB·�x2)�y1]

[(�x1 + �x2)(�y1 + �y2)]
(14)

where �x1 = xP − xB, �x2 = xA − xP, �y1 =yD − yP, �y2 = yP − yA. By setting UP=0; UA
can be calculated from Equation (14). This scheme can also be used to obtain the interpolated
values of the pressure at point P.
According to the de�nition of momentum forcing, non-zero force exists only at the im-

mersed boundary or at the points inside the immersed boundary, such as the �lled black
points in Figure 3. The points with hollowed marks are the only �uid-neighbour nodes at the
interior of the closed boundary. The velocity at these points will also be changed when the
interpolation equation (13) is used. So a non-zero momentum forcing on these points will be
obtained by Equation (12).
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The other interior points in Figure 3 are the ‘dry’ or ‘inactive’ points. There are two
di�erent ways to treat these points [6]:

(a) Impose the forcing on the interior points without any smoothing; this is equivalent to
the speci�cation the velocity distribution inside the body with the pressure adjusted
accordingly;

(b) Leave the interior points free to develop a �ow without imposing anything. The �ow
pattern inside the body will be di�erent from that in case (a), but the external �ow
will be unchanged.

Both approaches have been tested. The result shows that the external �ow is essentially
independent of the internal �ow conditions. In the present study, we adopted the �rst approach
and impose a zero-velocity distribution in the interior region.

3.3. Boundary condition

A uniform current or a linear wave can be imposed at the in�ow boundary of the computa-
tional domain. All the variables will be speci�ed based on analytical solution or experimental
measurement. At the out�ow boundary, the radiation condition is used for all the variables.
The pressure is zero at the free surface and the vertical gradients of all the velocity compo-
nents are zero. At the bottom the velocity components in the normal and tangential direction
are zero (no-slip), and the vertical gradient of pressure is balanced by the gravitational accel-
eration.

3.4. Mass conservation and pressure boundary condition

Kim et al. [5] introduced a mass source=sink, q, for the cells containing the immersed boundary
to satisfy local mass conservation. The continuity equation was written as

@ui
@xi

− q=0 (15)

in which q was applied only on the boundary or inside the enclosed boundary. Their numerical
results showed that the mass source/sink term was essential in order to obtain a realistic
solution and to increase the accuracy of the solution near boundary. On the other hand, Fadlun
et al. [6] postulated that the pressure boundary condition could be automatically satis�ed at
the immersed boundary with no mass source term introduced in the governing equations.
Obviously, if no treatment is applied, the local continuity of the �ow adjacent to the

immersed boundary may not be satis�ed, especially at the beginning of the simulation when
incorrect initial condition is used. While after adding the mass source in the cells containing
the immersed boundary, global mass within the computational domain may not be conserved.
If the internal �ow pattern is independent of the external �ow as mentioned above, the mass

source=sink will a�ect only the interior �ow pattern and the �ow closed to the boundary. In the
present study, �ows around cylinder for both cases with and without mass source=sink term
are tested. We found that in both cases, although the velocity satis�es the no-slip boundary
condition along the immersed boundary, the calculation is not quite stable since the pressure
distribution is incorrect near the immersed boundary. The problem is alleviated by the impo-
sition of zero normal gradient condition of pressure. This approach can be interpreted as an
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Figure 4. Implementation of the zero gradient pressure condition: (a) two �uid neighbour nodes;
(b) one �uid neighbour node; (c) one �uid neighbour node; and (d) three �uid neighbour points.

alternative way to enforce continuity since the Poisson equation is derived from the continu-
ity equation. It is easy to understand that when PA=PB in Figure 2(a), mass conservation at
point P will be satis�ed automatically since there will be no �ow across the boundary. In
our view, specifying pressure at the boundary can e�ectively reproduce the correct pressure
distribution and enforce continuity.
The implementation of zero gradient pressure condition is illustration in Figure 4. In

Figure 4(a), node A has two �uid neighbour nodes B and D, zero normal pressure gradi-
ent condition on point P can be obtained by setting pA=pP1. In Figure 4(b) and 4(c), node
A has only one �uid neighbour node, and the condition can be satis�ed by setting pA=pE .
The values pP1; pE can be calculated by linear interpolation. Pressure of the node which has
three �uid neighbour nodes as shown in Figure 4(d) is set as the average of the pressure
values at the three neighbour points, pA=(pB + pC + pD)=3.
Linear interpolation method is employed to calculate the unknown pressure, and the results

will generally have second order accuracy. However, the grid spacings in di�erent directions
are better to be of similar size for the method to be easily implemented.

4. FLOW AROUND SQUARE CYLINDER

The �ow around a cylinder frequently occurs in various internal and external engineering
�ow problems such as wind engineering, hydraulic engineering and heat transfer problems.
Various experimental and numerical studies have been conducted on the �ows around square
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x 

y 

Figure 5. Mesh arrangement near the cylinder (only every other grid line is shown in
both directions for better visibility).

cylinders because the orthogonal geometrical con�guration of the cylinder can be treated with
relatively simple grids and, on the other hand, some typical complex �ow phenomena such
as separation, vortex shedding, wake formation and growth behind the body will occur. This
problem is used in the present study as the �rst test case.
In the computation the Cartesian co-ordinate system is used. The x-axis is aligned with the

in�ow direction. The z-axis is parallel with the vertical axis of the cylinder and perpendicular
to the horizontal (x; y) plane. The square cylinder of dimension 0:1 m× 0:1 m× 0:1 m is
deployed in a channel that measures 2:0 m× 1:0 m in x; y direction, respectively. The still
water depth is 0:1 m. The cylinder is located at the centre along the y direction and its front
face is at a distance 0:55m from the inlet boundary. The incoming channel �ow has a uniform
velocity of 0:22 m=s. No arti�cial velocity �uctuation is introduced at the in�ow boundary.
The Reynolds number in this case is estimated to be Re=UL=�=2:2× 104, where U is the
velocity of incoming �ow and L is the width of the cylinder. The value of Re in this study
is the same as that used in the experimental study by Lyn et al. [15], based on which Yu
[16], Rodi [17], Li and Lin [11] validated their numerical models.
A non-uniform mesh is employed, which has a total number of 150× 108 grids on the

horizontal plane with the �nest grid �x=�y=0:001 m (equal to 1% width of the cylinder)
arranged near the four corners of the cylinder (Figure 5). A total of 20 uniform grids are
used in the vertical direction. Grid size ratio (ratio of the adjacent grid sizes) is 1.0–1.2 in
x; y direction and 1.0 in z direction. Dynamic time step �t is determined by the stability
criteria based on the Courant number and the non-dimensional di�usion number. A time step
of �t=4× 10−4 s is used to carry out the computation up to t=35 s. The computer cost is
approximately 6.4 CPU s/time step with a grid of approximately 3:6× 105 nodes, running on
a Pentium 4 PC with 2.4 GHz CPU. In fact, apart from the numerical method used, RAM and
CPU requirements of a computer code depend on many other factors, such as the computer
programming technique in writing the code, the output requirement, and hardware architecture
of the computer systems.
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The governing equations on all the points that correspond to the internal �uid part of the
domain have been solved. The stability and accuracy of the calculation depends on many
factors such as �ow velocity, turbulence model, numerical method, the geometry to be mim-
icked and grid size. In the computation it is found that the most important factor is the grid
size and its ratio in di�erent directions near the boundary of the cylinder. When the grid size
�x=�y=0:004 m is used, the computed results display no separation phenomena on the
two side surfaces of the cylinder and vortex shedding is limited in a small region behind the
cylinder. And the use of large ratio of grid sizes in di�erent directions may cause incorrect
interpolation results. Both cases with and without mass source/sink are tested and the results
display not much di�erence. We will present the results and discussions for the case without
mass source term unless otherwise indicated.

4.1. Vortex shedding

It is well known that when Re is high enough, the �ow passing a blu� body will become
turbulent and vortices will be formed at the separation points that are generally located at
the sharp corners if exist. Normally, the shedding is periodic and the shedding frequency f
depends on both the incoming �ow and the size and shape of the solid body. In the present
study, the in�ow is basically laminar, with Re=2:2× 104. The �ow around the square cylinder
will experience the states from symmetric �ow to separation at the front corners and vortex
shedding behind the cylinder. All these phenomena have been observed in the computed
results. Before the fully developed state is achieved, the transient period lasts about 13 s.
Figure 6 displays the contours of vorticity at di�erent time. From the �gure we can see clearly
that at the initial stage, the �ow is basically symmetric about the centreline of the cylinder in
y-direction. As time elapses, it becomes asymmetric and chaotic. From 8:0 s onwards, vortex
shedding occurs in an unstable way at about one unit (0:1 m) downstream from the back
face of cylinder. This process can be regarded as the evolution from laminar �ow to fully
developed turbulent �ow and reach the dynamic steady state eventually.
After 13 s, the periodic vortex shedding phenomenon becomes stable. Figure 7 shows the

contour plots of vorticity from 14:4 s to 18 s during which about one vortex shedding cycle is
completed. It is seen that the vortices are originated from the front corners of the cylinder and
carried over the back corners and eventually becomes periodic. The position of the shedding
is much closer to the back face of the cylinder comparing with the previous state and vortex
shedding occurs in a long downstream distance. Non-dimensional parameter that is related to
the frequency of vortex shedding is de�ned by, St=fL=U , which is commonly referred to
as the Strouhal number. In the study the shedding period is found to be about 3:42 s, and
St=0:133 which is in very good agreement with the value of 0.13 obtained from experiment
[18] and most of the numerical computations [17].

4.2. Pressure �eld

In Figure 8, the computed distribution of the mean pressure coe�cient around the cylinder is
compared with the experimental data and other numerical results. The pressure coe�cient Cp
is de�ned by Cp=(p−p0)=0:5�u20, where u0 is the uniform velocity at the in�ow boundary,
p0 the undisturbed pressure, p the mean pressure. The current simulation results are in good
agreement with the experimental data except at two points at the front corners of the cylinder.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:85–107



IMMERSED BOUNDARY FINITE DIFFERENCE METHOD 97

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

(a) (b)

 (c) (d)

Figure 6. Contour plots of the vorticity at di�erent time: (a) 1:2 s (symmetric structure);
(b) 5:0 s (chaotic structure); (c) 8:8 s (unstable shedding); and (d) 9:6 s (unstable shedding).

The results are better than the numerical results by using the normal 3D LES model (the
experimental data of Lee [19] did not give out the pressure coe�cients at the four corner
points). The pressure coe�cient −Cpb on the leeward face is around 1.484 which is within
the range of the experimental values of 1.3–1.6 (see Table I).

4.3. Force coe�cients

Force coe�cients have important application in the design of hydraulic structure subjected
to water �ow or buildings subjected to wind blow. In this study, the time histories of force
components in x and y directions are calculated by integration of the pressure around the
cylinder. The results show that both force components Fx and Fy are of the same order of
magnitude and Fx has fairly constant values with small amplitude of oscillation after 13 s,
while Fy oscillates strongly due to periodic vortex shedding from the front corners of the
cylinder and the period of oscillation is the same as the period of vortex shedding.
The non-dimensional drag force coe�cient is de�ned by CD =Fx=(0:5�Au20) where A is the

projected area of the cylinder on a plane perpendicular to the x axis. The lift force coe�cient
is de�ned similarly by CL =Fy=(0:5�Au20). The time history of the drag force coe�cients CD
and the lift force coe�cients CL are shown in Figure 9. Table I lists the computed �ow
parameters and their comparison with the experimental results and other numerical results.
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Figure 7. Contour plots of vorticity for stable vortex shedding within one period.

The experimental results for the mean drag coe�cient are in the range of 2.0–2.16 over
a wide range of Reynolds number. The mean drag coe�cient for the present study is about
6–7% higher than the upper bound of the experimental results of 2.16. Rodi [17] reported that
the simulations used no-slip boundary conditions on solid boundary produced a higher drag
coe�cient than those used a wall function boundary condition. In the IMB method the no-slip
boundary condition is used generally and is adopted in the present study. The experimental
results for the root mean squares (RMS) values C ′

D and C
′
L display considerably variations.

The ranges of the experimental obtained coe�cients are C ′
D =0:17 − 0:23, C ′

L =0:5 − 1:32,
and the ranges of the previously computed coe�cients are C ′

D =0:1− 0:27, C ′
L =0:38− 1:79.
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Figure 8. Distribution of the mean pressure coe�cient around a square cylinder.

Table I. Summary of the major �ow parameters obtained experimentally and numerically.

RMS of CD RMS of CL
Re
1000 St −Cpb CD C′

D C′
L

IMB 22 0.135 1.48 2.32 0.18 1.20
(0.133) (1.49) (2.30) (0.22) (1.39)

Rodi [20] 22 0.066–0.14 1.66–2.77 0.1–0.27 0.38–1.79
Yu and Kareem [16] 22 0.135 1.02 2.14 0.25 1.15

Experiments
Lee [19] 176 0.122 1.30 2.04 0.23 1.23
Bearman and Obasaju [18] 5.8–32 0.130 1.60 1.20
Norberg [21] 13 0.130 1.43 2.16
Cheng et al. [22] 22 2.0 0.5
Vickery [23] 100 0.118 1.32 2.05 0.17 1.32
Lyn et al. [15] 21.4 0.132 2.1

Note: data in bracket are for the case with mass source=sink term.

The presently computed value of C ′
D is within the range of experiment results while the

computed value of C ′
L is at the lower bound of the range of the experimental data. The

results show that the RMS coe�cients are more sensitive than the mean values to various
numerical and physical factors, such as the SGS models, grid layouts, boundary conditions
and �ow parameters such as the turbulence intensities of the incoming �ow, values of Re.
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Figure 9. Time histories of the computed normal and transverse force coe�cients.
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Figure 10. Time-averaged streamwise velocity distribution: (a) along the longitudinal centerline;
and (b) along the transverse centreline.

4.4. Velocity �eld

The time-averaged streamwise velocity along the centre line in the x-direction is shown in
Figure 10(a) together with the experimental results by Lyn et al. [15] and Durao et al.
[24]. In the �gure IMB1 and IMB2 denote the results obtained from the schemes with and
without the mass source=sink term, respectively. The displayed results are time-averaged over
one shedding period. They are in good agreement with the experimental results in the line
segment upstream of the cylinder, and display a faster �ow recovery in the wake region.
Large scale wiggles are observed from x=2:5L to 6L. These wiggles are suspected due to
the e�ect of the free surface. The asymmetry in the surface and bottom boundary conditions
may produce a stronger three-dimensional motion and the steamwise velocity oscillation.
The velocity distribution along the line normal to the side wall of the square cylinder is

shown in Figure 10(b), together with the experimental data by Lyn et al. and the numerical
results by the LES model of Murakami and Mochida [25]. In the present study, the �nest
grid near the cylinder is L=100, which is the same as that used in the work of Murakami
and Mochida. By using the no-slip condition, the velocity shows a clear tendency to approach
zero at the wall surface. The reverse �ow region is observed clearly. The velocity pro�le
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Figure 12. Velocity components u and w at the point (0:8 m, 0 m, 0:05 m).

outside the boundary layer is in good agreement with the numerical results from Murakami
and Mochida. It is likely that the large negative velocities close to the side walls of the
cylinder will cause higher pressure suction near the upstream corner, and this will result in a
larger recirculation region.
Figure 11 displays the total �uctuation energy (periodic plus turbulent) of velocity along

the longitudinal centerline. The agreement between the computed results and the measured
data is satisfactory. The e�ect of variation of the value of Smagorinsky constant Cs can be
observed here. By reducing the value of Cs form 0.15 to 0.10, about 20% reduction in the
peak total �uctuation energy is obtained. The results justify the use of a higher value of Cs
of 0.15. The e�ect of Cs on mean velocities is less apparent.
In Figure 12, the time history of velocities at the point (0:8 m, 0 m, 0:11 m), which is

8L downstream of the front face of the cylinder, is plotted. It can be seen that the vertical
velocity w �uctuates around w=0 with the same order of magnitude as that of the streamwise
velocity. It shows that the �ow �eld behind the cylinder is indeed three-dimensional although
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Figure 13. Vortex structure at the vertical symmetric plane and behind the cylinder.

Figure 14. Tsing Ma suspension bridge deck: (a) schematic diagram; and (b) cross section.

the in�ow is laminar. There are lots of irregular turbulent vortical structures exist at the middle
x–z plane of the cylinder (Figure 13), although the vorticity is only about one sixth of that
on the horizontal plane. Instead of having clear downstream movement as time elapses, these
vortices seem to generate and disappear stochastically.

5. FLOW AROUND THE TSING MA BRIDGE DECK SECTION MODEL

To further test the IMB method, the simulation of skew �ow around a more complex blu�
shape, the Tsing Ma bridge deck section model, is carried out. The Tsing Ma suspension
bridge deck is a double layer deck, with two railways and two carriage-ways on the lower
level within the bridge deck. The dimension of a typical deck section is 41:0 m wide and
7:643m high (Figure 14). In the present study the geometric scale of the deck sectional model
is set at 1:100. This is mainly because LES is still with di�culty in simulating �ow with very
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Figure 15. Mesh arrangement near the deck (grid lines are plotted
every two grid nodes for better visibility).

large Re. In addition the �ow patterns are likely to be similar over a wide range of Re since
the separation points will be always at the sharp corners. The width and height of model are
0.41 and 0:0764m, respectively while the length is 1:06m. A computational domain with the
length of 7 m in x-direction, 1:0 m in y-direction and 1:06 m in z-direction, is discretized by
a non-uniform 276× 126× 20 grid system (Figure 15). The centre point of the bridge deck
section is located at (2:0 m; 0:5 m) in the horizontal plane. The �nest grid in the front and
rear part of the deck is 1:6mm in x direction. Uniform grid with �y=2:0mm is used in the
deck region in y direction. A uniform wind speed u0 is sent from the left in�ow boundary.
The air density �0 = 1:225 kg=m

3 and viscosity �=1:0× 10−5 m2=s. A total of �ve cases have
been simulated, with u0 = 0:5−0:75m=s, Re=3280−5730. The angle between the mean �ow
direction and the longitudinal axis, �, varies from 0 to 5◦. The time step �t=2:25× 10−4 s
which satis�es the numerical stability constraint is used to carry out the computation for 14:0s.

5.1. Vortex shedding

The computed results show that for all cases stable vortex shedding occurs after about t=3s.
Figure 16 displays the vorticity contours of the �ow around the bridge deck section for cases
of u0 = 0:5 m=s, �=5◦ and 0◦. For the case with �=5◦, an obvious asymmetric vorticity
�eld is observed, and strong shear stresses on the front section cause �ow separations along
the upper and lower surfaces. The periods of vortex shedding are mainly determined by
wind speed at the inlet boundary, and are insensitive to the rotational angle �. In this study,
the shedding periods are found to be 0.62 and 0:94 s for the cases of u0 = 0:75 m=s and
u0 = 0:50 m=s, respectively. These give St =0:164 and 0.163 for the two cases. In fact St is
approximately constant for all the cases tested.

5.2. Velocity �eld

Figure 17 shows the vector plots at di�erent times within one vortex shedding period for
rotation angle �=0◦ and 5◦. It can be seen that the �ow pattern behind the deck is basically
similar for di�erent rotational angle. The size of the recirculation region is however larger
when the rotational angle is not zero. Flow separation can be clearly observed along the upper
surface of the deck.

5.3. Force coe�cient

The total forces in x and y directions are calculated by integrating the pressure around the
deck. The time histories of Fx and Fy are given in Figure 18. The results show that both
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Figure 16. Plots of vorticity contours of the �ow around deck for the case of u0 = 0:5m=s (light colour
represents positive vorticity and dark represents negative vorticity).

Table II. Computed force coe�cients and Strouhal number.

�=0◦ �=3◦ �=5◦

CD 0.4925 0.5570 0.6761
C′
D 0.0330 0.0340 0.0299
CL 0.0470 0.2710 0.3658
C′
L 0.0270 0.0263 0.0292
St 0.163 0.163 0.163

Fx and Fy are of the same order of magnitude and increase with the �ow velocity and the
rotation angle. Fx is fairly constant after about t=3 s for all cases. Fy is periodic in time due
to vortex shedding. The oscillation of Fy is not symmetrical about the axis of Fy=0 as that
observed in the case of square cylinder, which is due to the asymmetry of the deck section.
The mean drag and lift coe�cients and the RMS coe�cients are listed in Table II. The

results show that the drag coe�cient moderately increases with the rotation angle, and the lift
coe�cient signi�cantly increases with the rotation angle. The magnitude of the drag or lift
coe�cients of the bridge deck section is much smaller than that of a square cylinder. This is
because the shape for the bridge deck section is closer to a streamline body.
Although there is no detailed experimental data for veri�cation, the computed results are

consistent with the general results on �ow around blu� bodies, including the correct trend
of the force coe�cients with the rotation angle, and small force coe�cients. The case study
shows that the IMB method can be used at least in a comparative study of the e�ect �ows
around complex blu� body.
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Figure 17. Vector plots at the central x–z plane (u0 = 0:5 m=s, �=0◦, 5◦; vectors are plotted for every
two grid nodes in both x and y directions).

6. CONCLUSIONS

Incorporating the IMB concept with a fractional step FD scheme on collocated grid system,
a 3D LES �ow model is developed and tested by two cases of �ow around blu� shapes:
(a) a square cylinder and (2) the Tsing Ma suspension bridge deck model section. The
arti�cial body forcing is explicitly evaluated to satisfy the �ow conditions at the immersed
boundary. An interpolation method of pressure and velocities at grid points closed to boundary
is developed, which is easily implemented due to the use of collocated grid. The results
show that the explicit imposition of zero gradient pressure boundary condition along the
immersed boundary can e�ectively reproduce the correct pressure distribution there, enforce
mass conservation and improve numerical stability. And the e�ectiveness of the IMB method
in dealing with complex geometry is due to the implementation of the interpolation procedure.
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Figure 18. Time histories of the drag and lift forces.

In the case of �ow around square cylinder at Re=22000, complex �ow phenomena such
as �ow separation and vortex shedding are reproduced. Very good agreement with the ex-
perimental data is obtained for almost all the numerical results (�ow patterns, drag, lift and
pressure coe�cients). For �ow around the Tsing Ma bridge deck section model, the period
of vortex shedding is mainly determined by the approach velocity and the Strouhal number is
about 0.16. The relative position of the deck to the �ow direction has signi�cant e�ect on the
lift coe�cient and the size of the recirculation region. The numerical results demonstrate that
the IMB method is e�ective to simulate the complex phenomena of �ow passing blu� body
and is easily extended to simulate moving or deformable blu� body in time varying �ows.
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